Life-cycle assessment of low-carbon technologies from screening to integrated energy system design

  • Lebenszyklusanalyse $CO_{2}$-armer Technologien vom Screening zum integrierten Energiesystemdesign

Deutz, Sarah; Bardow, André (Thesis advisor); Leitner, Walter (Thesis advisor); von der Aßen, Niklas Vincenz (Thesis advisor)

1. Auflage. - Aachen : Wissenschaftsverlag Mainz GmbH (2023)
Buch, Doktorarbeit

In: Aachener Beiträge zur Technischen Thermodynamik 43
Seite(n)/Artikel-Nr.: 1 Online-Ressource : Illustrationen, Diagramme

Dissertation, RWTH Aachen University, 2022

Kurzfassung

Die Eindämmung des Klimawandels erfordert eine zeitnahe massive Reduktion der Treibhausgasemissionen und zudem negative Emissionen in der zweiten Hälfte des Jahrhunderts. Hierfür werden Kohlendioxid (CO2)-arme Technologien entwickelt. Der ökologische Nutzen ist jedoch nicht allgemein erwiesen, da viele dieser Technologien erhebliche Mengen CO2-armer Energie erfordern und in komplexen Energiesystemen interagieren. Zudem haben CO2-arme Technologien heute eine große Bandbreite an technologischer Reife mit unterschiedlicher Datenverfügbarkeit. Die Bewertung dieser Bandbreite erfordert eine Ökobilanz (engl. life-cycle assesment, LCA), die vom Screening bis zum integrierten Energiesystem auf den Ebenen Konzept-, Prozess-, Anlagen und System reicht. Auf der Konzeptebene demonstrieren wir den Umgang mit begrenzter Datenverfügbarkeit und wenden ein LCA-basiertes Screening an, das ein Best-Case-Ranking von CO2-basierten Chemikalien ermöglicht. Über die Hälfte der untersuchten Produkte könnten bereits heute ökologische Vorteile durch verkürzte Synthesewege und einen geringeren Wasserstoff (H2)-Bedarf bieten, während die andere Hälfte nur durch ausreichend CO2-armen Strom ökologische Vorteile erzielt. Unter Verwendung eines Prozesses aus dem Best-Case-Ranking erweitern wir den Anwendungsbereich der LCA auf die Prozessebene, um eine detailliertere LCA für CO2-basierte Oxymethylenether (OME)-Kraftstoffe zu ermöglichen. Unsere Well-toWheel-Analyse zeigt ein signifikantes Potenzial zur Reduzierung lokaler Schadstoffe, wohingegen für die Reduktion der Klimawirkungen große Mengen CO2-armer Energie benötigt werden. Anschließend erweitern wir die LCA auf Anlagenebene exemplarisch für industrielle Anlagen zur Abscheidung von CO2 aus der Luft. Dabei zeigen wir, dass die Klimavorteile stark von der Stromversorgung und Verwendung des abgetrennten CO2 abhängen. Zudem wird ein großflächiger Einsatz von DAC, z.B. für die Abtrennung von 1 % der globalen jährlichen CO2-Emissionen, nicht durch Energie- und Materialbedarf begrenzt, während andere Umweltwirkungen um weniger als 1 % zunehmen. Die bisherigen Analysen zeigen das ökologische Potenzial CO2-armer Technologien sowie ihre Abhängigkeit von CO2-armer Energie, vernachlässigen jedoch ihre sektorübergreifenden Interaktionen. Daher erweitern wir die LCA auf Systemebene und entwickeln ein Energiesystemmodell gekoppelt mit LCA. Die Berechnungen der Transitionspfade zeigen viele ökologische Vorteile, aber auch eine Erhöhung einiger Umweltwirkungen. Diese erhöhten Umweltwirkungen sollten bei der Entwicklung von Klimaschutzstrategien berücksichtigt werden.

Einrichtungen

  • Lehrstuhl für Technische Chemie und Petrolchemie (N.N.) [154110]
  • Fachgruppe Chemie [150000]
  • Lehrstuhl für Technische Thermodynamik und Institut für Thermodynamik [412110]

Identifikationsnummern

Downloads